Dynamic Data Driven Application System for Wildfire Spread Simulation
نویسندگان
چکیده
Wildfires have significant impact on both ecosystems and human society. To effectively manage wildfires, simulation models are used to study and predict wildfire spread. The accuracy of wildfire spread simulations depends on many factors, including GIS data, fuel data, weather data, and high-fidelity wildfire behavior models. Unfortunately, due to the dynamic and complex nature of wildfire, it is impractical to obtain all these data with no error. Therefore, predictions from the simulation model will be different from what it is in a real wildfire. Without assimilating data from the real wildfire and dynamically adjusting the simulation, the difference between the simulation and the real wildfire is very likely to continuously grow. With the development of sensor technologies and the advance of computer infrastructure, dynamic data driven application systems (DDDAS) have become an active research area in recent years. In a DDDAS, data obtained from wireless sensors is fed into the simulation model to make predictions of the real system. This dynamic input is treated as the measurement to evaluate the output and adjust the states of the model, thus to improve simulation results. To improve the accuracy of wildfire spread simulations, we apply the concept of DDDAS to wildfire spread simulation by dynamically assimilating sensor data from real wildfires into the simulation model. The assimilation system relates the system model and the observation data of the true state, and uses analysis approaches to obtain state estimations. We employ Sequential Monte Carlo (SMC) methods (also called particle filters) to carry out data assimilation in this work. Based on the structure of DDDAS, this dissertation presents the data assimilation system and data assimilation results in wildfire spread simulations. We carry out sensitivity analysis for different densities, frequencies, and qualities of sensor data, and quantify the effectiveness of SMC methods based on different measurement metrics. Furthermore, to improve simulation results, the image-morphing technique is introduced into the DDDAS for wildfire spread simulation. INDEX WORDS: Wildfire spread, Modeling, Simulation, DEVS, DDDAS, Sequential Monte Carlo methods DYNAMIC DATA DRIVEN APPLICATION SYSTEM FOR WILDFIRE SPREAD SIMULATION
منابع مشابه
DYNAMIC DATA DRIVEN APPLICATION SYSTEM FOR WILDFIRE SPREAD SIMULATION by
Wildfires have significant impact on both ecosystems and human society. To effectively manage wildfires, simulation models are used to study and predict wildfire spread. The accuracy of wildfire spread simulations depends on many factors, including GIS data, fuel data, weather data, and high-fidelity wildfire behavior models. Unfortunately, due to the dynamic and complex nature of wildfire, it ...
متن کاملA Data-Driven Model for Large Wildfire Behaviour Prediction in Europe
The European Forest Fire Information System (EFFIS) has been established by the Joint Research Centre (JRC) and the Directorate General for Environment (DG ENV) of the European Commission (EC) in close collaboration with the Member States and neighbour countries. EFFIS is intended as complementary system to national and regional systems in the countries, providing harmonised information require...
متن کاملTowards a Dynamic Data Driven Application System for Wildfire Simulation
We report on an ongoing effort to build a Dynamic Data Driven Application System (DDDAS) for short-range forecast of wildfire behavior from real-time weather data, images, and sensor streams. The system should change the forecast when new data is received. The basic approach is to encapsulate the model code and use an ensemble Kalman filter in time-space. Several variants of the ensemble Kalman...
متن کاملTowards policies for data insertion in dynamic data driven application systems: a case study sudden changes in wildland fire
We have applied the Dynamic Data Driven Application System (DDDAS) methodology to predict wildfire propagation. Our goal is to build a system that dynamically adapts to sudden changes in environmental conditions. For this purpose, we are building a parallel wildfire prediction method, which is able to assimilate real-time data to be injected in the prediction process at execution time. This dat...
متن کاملDynamic Data Driven Ensemble for Wildfire Behaviour Assessment: A Case Study
Wildfire information has long been collected in Europe, with particular focus on forest fires. The European Forest Fire Information System (EFFIS) of the European Commission complements and harmonises the information collected by member countries and covers the forest fire management cycle. This latter ranges from forest fire preparedness to post-fire impact analysis. However, predicting and si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015